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A Hierarchical Clustering Network Based on a Model of Olfactory Processing

P.A. SHOEMAKER
Naval Command, Control, and Ocean Surveillance Center, RDT&E Division, San Diego, CA 92152-5000

C.G. HUTCHENS AND S.B. PATIL
E~ecirical and Computer FJgineering Department, OkLahoma State University. Stillwater, OK 74078

Abstract. We describe a direct analog implementation of a neural network model of olfactory processing [44-481.
This model has been shown capable of performing hierarchical clustering as a result of a coactivity-based unsuper-
vised learning rule which is modeled after long-term synaptic potentiation. Network function is statistically based
and does not require highly precise weights or other components. We present current-mode circuit designs to im-
plement the required functions in CMOS integrated circuitry, and propose the use of floating-gate MOS transistors
bfr modifiable, nonvolatile interconnection weights. Methods for arrangement of these weights into a sparse pseudo-

random interconnection matrix, and for parallel implementation of the learning rule, are described. Test results
from functional blocks on first silicon are presented. It is estimated that a network with upwards of 50K weights
and with submicrosecond settling times could be built with a conventional CMOS double-poly process and die size.

S'3

1. Introduction learning are important issues in both the digital and
analog cases.

In recent years, interest in neural networks and neural- Elucidation of the computational principles used in

network-like computational models has seen a major real nervous systems, on the other hand, has been very
resurgence, due at least in part to the prospect of coin- limited due to the extreme experimental difficulties en-
pact and dense implementation of these networks in countered in network neuroscience. Understanding of
analog integrated circuit form. A number of widely collective function of neural networks in vertebrates is
studied architectures and algorithms are based on adap- largely limited to sensory structures and early process-
tations of conventional statistical and numerical tech- ing, which have been studied in the greatest depth and
niques which admit parallel network implementations with the most success; even in these cases, interpreta-
(e.g., multilayer perceptrons with back-propagation tion of the computational principles which are fbllowed
learning [1], learning vector quantization [2], and radial is a matter of current research [9-11].
basis function or probabilistic neural networks [3, 4]), A number of the direct analog implementations of

I: or on analogy with physical systems (e.g., Hopfield net- neural networks that have been reported to date consist
works [5] and Boltzmann machines [61). These might of building blocks that are suitable for the artificial par-
be properly termed artificial neural network algorithms, adigms; the layered heavily interconnected feedforward
with emphasis on the artificiality, since resemblance to architecture epitomized by the multilayer perceptron
real neural networks (beyond the parallel structure of [12-181 or the reciprocally and symmetrically intercon-
interconnected processing units) is likely to be either nected architecture dscribed by Hopfield [5] and Cohen
superficial or coincidental. These algorithms have been and Grossberg [ 19] are often targeted [20-22). By way
applied with some success to a number of problems, of contrast, some researchers, most notably Mead and
although studies of them have been conducted almost co-workers, have attempted to build reasonably faithful
exclusively in simulations. Much debate has centered on analogs of biological neurons or networks 123-29],
the relative advantages, and even feasibility, of analog which are generally early processing structures for sen-
versus digital implementations [7, 81. With the architec- sory input. Mueller and co-workers have reported an
tures and algorithms that are commonly reported, the intermediate approach with a chipset retaining some
precision with which interconnection weights can be notable features of biological neurons but allowing pro-
represented and the resolution of weight changes during grammable interconnection into general networks 1301.
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298 Shoemaker. Hutchens and Patil

An outstanding problem in analog networks is the question whose resolution is stymied by the pat'Ity of*
practical implementation of learning, which in the information on network-level function within the brain.
neural network field usually comprises some algo- However, a potentially useful model for olfactory pr)c-
rithmic procedure for modification of interconnection essing has been proposed by Granger, Lynch, and
weights between neuronal analogs in response to stimuli Ambros-Ingerson 144-481 which we believe provides
and possibly desired response or other feedback pre- some preliminary answers to questions of this kind.
sented to the network. Few implementations reported This model deals with the interacting structures of the
to date actually include learning of this kind on chip olfactory bulb (which receives input from the olfactory
[17, 20, 22]. Implementations of biologically inspired receptors via the olfactory nerve) and the piriform cor-
networks are often hardwired [24-261, although a few tex, as they appear in olfactory mammals such as the
models with limited adaptive capabilities have been rodents and lagomorphs. It was developed to study the
built [27, 281. A central research issue for imple- function of these structures based on their known anat-
mentation of the artificial learning paradigms is the omy and physiology, and its emergent computational
precision with which weight or other parameter changes properties, rather than appearing by design, were dis-
may be calculated (dependent upon precision of com- covered upon analysis of simulation results. Function
ponents such as weight circuits) and imposed. A suit- is acquired by an unsupervised learning rule, effectively
able analog medium for long-term storage of weights based on coactivity, which models long-term potentia-
or other parameters is also a matter of current research; tion. Operation is dependent upon the statistical prop-
floating-gate MOS or MNOS devices have been pro- erties of large assemblages of neurons with sparse, com-
posed for this purpose, and studied by a number of binatorial interconnections and coarse-valued weights.
workers [12, 27, 31-361. The potential due to the In this paper, we discuss this model and the features
charge stored on such a structure could be used to con- which make it amenable to implementation, and we
trol the conductance of a transistor or transistors in a describe ongoing efforts toward such an implementa-
circuit performing the weighting function. However, the tion in analog CMOS integrated circuitry. The low-
processes by which the stored charge may be altered resolution weights and coarse, unidirectional weight
require either UV irradiation, or high programming changes allow a parallel implementation of the learn-
voltages to induce Fowler-Nordheim tunneling or hot- ing rule, using floating gates for nonvolatile analog
carrier injection. In the latter cases particularly, the weight storage. Designs of test circuits for macrocells
charging phenomena are very nonlinear and sensitive which implement the required functions are presented,
to geometries and processing parameters [371, and thus and the integration of these macrocells into a complete
it is difficult to conceive of precise modification of network is discussed.
analog weights without some kind of local closed-loop
control. A few workers have proposed modifications
of established algorithms, such as very coarse quan- 2. The Model
tization of weight updates [38, 39], which circumvent
the need for imposition of precise weight changes, but The interested reader is referred to the work of Granger
the practicability of implementing even these learning et al. for details of the olfactory model 144-481. The
rules in parallel in analog circuitry remains to be essential features of the model which are relevant to
demonstrated. the proposed implementation are summarized as fol-

In biological neural networks, modulation of synap- lows. The olfactory bulb receives input from the olfac-
tic efficacy has long been regarded as a likely mech- tory receptor neurons in a somewhat topographic
anism for learning and memory [40], and the phenom- fashion: a particular type of receptor cell (i.e., a recep-
enon of long-term potentiation (LTP) as observed in tor which responds to particular chemical stimuli) pro-
the hippocampus, limbic system, and certain cortical jects its axons along with those of similar cells to a
structures is one candidate for this type of mechanism delimited area of the olfactory bulb which is denoted
141-43]. Changes in synaptic strength due to LTP are a glomerulus. The aggregate firing rate of these input
thought to be rather coarse [43], in contrast with the cells is regarded as the input to the corresponding
graded and precise weights and weight changes which glomerulus. There are many giomeruli in the olfacton
are required by the artificial paradigms. How a ner- bulb, each associated with a different type of receptor
vous system might work within such constraints to per- cell, and thus the system input collectively may be
form useful computation and to learn effectively is a regarded as a vector. The input components, which are

36



- i., D`- dt,"g not
,;1,o ezoproductiou

A Hierarchical Clustering Network Based on a Model of ()llactory Processing 299

excitatory, are first combined with inhibitory feedback The reciprocal process of feedforward excitation of
signals to be discussed below. The resulting net inputs the piriform by the olfactory bulb followed by feedback
are subject to nonlinear processing (saturating low and inhibition of the bulb by the piriform is repeated cyclic-

S/high) as well as a global normalization, mediated by ally at the so-called theta rhythm, to which activity in
, certain inhibitory cells, which limits total bulb activ- this part of the brain, as well as the animal's sniffing

ity. The mitral cells, or excitatory neurons within the behavior, is synchronized. Feedback inhibition of the
olfactory bulb, are regarded as two-state or McCulloch- bulb during this multiple sampling cumulative. Thus,
Pitts neurons, which are either quiescent or active, as the animal sniffs a single odor, the following se-
Those within each glomerulus have a range of differ- quence takes place in the naive network: after the first
ing excitation thresholds at which they become active, sniff, the glomeruli with the most significant input corn-
The normalization contrains the bulb so that only some ponents are most strongly inhibited, allowing second-
fraction (on the order of 20% or so) of all mitral cells ary components to elicit more significant responses
do in fact become active upon stimulation. The net ef- from their glomeruli during the next sniff. In subse-
fect of the processing within the glomeruli is thus as quent sniffs, these components are also inhibited allow-
follows: the most significant components of the net in- ing still weaker components to be expressed, and so
put vector are accentuated while many others are sup- on in a hierarchical fashion. At each step in this hier-
pressed by the constraint on total activity, and the out- archy, a novel piriform output code is guaranteed by
put of each glomerulus is a "thermometer-coded" ver- the refractory state of previously active piriform cells.

sion of this processed signal, in which the signal in- Learning in this system, which is modeled after
i tensity is represented by total number of active cells long-term potentiation, is coactivity-based: the weights

ii' ; (due to differing thresholds) within the glomerulus. of excitatory synapses from active mitral cells onto
The outputs of the mitral cells then project to the "winning" piriform cells are incremented. Learning

piriform cortex via the lateral olfactory tract (LOT). is mediated by external inputs from higher cortical?;Ii Synpases with piriform cells, which are excitatory, are regions (i.e., it can be turned on or off). Weights can
"sparse and combinatorial rather than topographic: they saturate; when fully potentiated they are larger than

appear to be made essentially at random, with a rela- naive weights by a factor of only two to three. Learn-
11'; tively low probability (on the order of 10%). (Piriform ing increments are of constant magnitude and typically

cells in the caudal region of the piriform cortex also represent 5%-10% of the range between naive and fully

receive excitatory inputs from cells in the rostral piri- potentiated weights. LTP, as the name implies, is a long-
form via associational fibers, although this feature will lasting phenomenon in which measurable weight decay
not be discussed in any detail in this paper.) The excit- is not observed.
atory piriform cells are arranged in groups or patches, The effect of learning in this model is that the net-
which are defined by strong local inhibition that results work develops a tendency to cluster its input vectors:
in a "winner-take-all" characteristic: only one or a few the output codes for vectors sufficiently close in the

. l of the most strongly stimulated cells within each patch input space become very similar or identical, as the
,*ii;", reach an active state at any one time. These cells are weights associated with piriform cells that have "won"
t ldso modeled as two-state devices. The sparse pattern of most frequently become larger. Moreoever, the feed-

winning cells within the patches is regarded as the spa- back from piriform to bulb then tends to inhibit the
, ' Iially encoded output of the olfactory bulf/piriform sys- glomeruli not simply in proportion to their activity, but

em; these active cells are those which happen to receive rather in relation to the expected activity for the cluster
i relatively large number of their synapses from active mean. Thus. not only are glomeruli with significant
mitral cells. After a burst of activity, piriform cells input components suppressed, but in addition, dif-
idergo afterhyperpolarization, which results in a re- ferences between the input vector and the cluster mean
ractory periodofnegligibleorvery reduced excitability. tend to be accentuated. The net result is that, during

The active piriform cells in turn inhibit the glomeruli the multisampling process, a hierarchical clustering
Ithe bulb via another pathway (this is the feedback in- takes place, in which initial output codes indicate broad
[bition which is summed with glomerular inputs). The class or cluster membership, and subsequent codes,
iibition is effected by means of synapses which develop subcluster or narrower class membership. Cluster and
cording to a correlational or Hebb-type learning rule, subcluster breadth in the input vector space are in-
sulting in strongest inhibition of those glomeruli most fluenced by the weight increment size. the ratio of
1ponsible for the firing of "winning" piriform cells, saturated to naive weight values, and the data sample

37



300 Shoemaker. Hutchens and Putil

on which the network learns. The essential features ot these net inputs are then subject nonlinear proces,
this model have been abstracted and embedded in a and normalization. Within the framework suggested
somewhat simplified version, whose resemblance to the biological model, we have developed a pair of alt
several other unsupervised clustering algorithms has natives for this processing/normalization which are I
been noted [45, 461. plementable with closed-loop circuits similar to th(

A number of features of this model are particularly used in automatic gain control (AGC). One most clos,
favorable for simple direct implementation. The neuron follows the form given by Ambros-Ingerson [451. c(
models are two-state devices, and consequently, four- sisting of a vector AGC loop with sigmoidal nonline.
quadrant multipliers are not required to implement the ity acting on each component within the loop, as ilhl
interconnection weights; in fact, single transistors suf- trated in figure Ia. A second includes an AGC lo
rice. However, most crucially, the weights require only without the sigmoids, but with a global offset add
low precision, on the order of 3-5 bits, and learning to each component within the loop such that the larg,
in the network comprises coarse, unidirectional weight net input elicits maximal activity from its glomeruh
changes which take place according to a simple Hebb- This offset is computed by a fast inner loop, as shos
type or coactivity-based update rule. Weights saturate in figure lb. The second scheme may offer some repi
as well, and this is a natural feature to be expected of sentational advantages, but the relative applicability
any analog storage medium. the two approaches is currently under investigation

system-level simulations.
Subsequent to this normalization, the processt

3. Implementation signals are thermometer-coded by the two-state mitr
neuron models in each glomerulus. Individual mitr

We propose a direct implementation of this algorithm cell analogs respond with a binary output, indicatit
in the form of a synchronous, analog silicon model in active or inactive.
CMOS circuitry. The importance of the theta rhythm In the piriform model, subnetworks of neuron
fbr the network function of hierarchical clustering sug- analogs are arranged in winner-take-all patches, ea(
gests the suitability of an approach which is syn- operating with a single global feedback line to achier
chronous or clocked at the highest level of function. patchwide inhibition of "losing" cells. Global feedbac
External inputs (analogous to inputs from olfactory implies that an N-cell patch would be implementabl
receptors) would be sampled periodically at an artificial with complexity of order (N). Such feedback networi
"theta rhythm" For each cycle of this rhythm, there have been described by Lazzaro et al. 1491.
would be two major phases: activation of the bulb and For "synaptic" weights, we propose the use of analo
feedforward excitation of the piriform, followed by feed- floating-gate memory in conjunction with a single tran,
back inhibition of the bulb by the piriform. Between istor weighting element whose conductance is modu
clock cycles, however, computation of neuronal inputs lated by charge on the floating gate. Because 10 or fewe
and activitations would be analog, asynchronous, and distinct synaptic strengths are required for the LOU
carried out in parallel. We also propose to implement synapses in the Granger/Lynch/Ambros-Ingerson mode
network learning, with modifiable nonvolatile weights [44-481, analog floating gates would seem to pos
which are updated in parallel according to the Granger/ little risk. Long-term (decades) retention of at least.
Lynch/Ambros-ingerson model when network plasticity bits of resolution has been estimated by extrapolatioi
is desired. Below we discuss the general approach, and from high-temperature charge-relaxation data on float
then present circuits designed to implement the requisite ing-gate circuits used in an analog neural network im
functions. plementation 1121.

In the model, the synapses from mitral cells ontt
piriform cells form a sparse, random interconnectior

3. 1. General Approach and Architecture matrix. The approach which we propose to implement
this matrix employs a simple one-to-one correspond-

Following the Granger/LynchlAmbros-lngerson model, ence of the number of weighting elements to number
neuronal analogs in both the bulb and piriform layers of synapses in the model, with mask-programmable
are two-state devices. In the bulb, net inputs to the connection of input and output lines allowing establish-
glomeruli are formed by combining positive external ment of the sparse pseudorandom connectivity The
input signals with (negative) inhibitory feedback, and physical weight matrix is composed of cells containing
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a the feedback loop. KG is a reference level corresponding to desired total activation. (b) Scheme which insures that the largest net input
omponent elicits a full-scale response. FS is a reference level corresponding to full-scale activation. Normalized output components are assumed

saturate low at zero.

Oi e or more weighting transistors and the crossing of of four mitral output lines and five piriform input lines.Several mitral output and piriform input lines and inter- Any input line may be interconnected with any output
i' mections are established at random between pairs line, with the caveat that double interconnection be-

infput and output lines within each cell. We consider tween a given pair of lines is excluded; a connectivity
prototype for this concept in which a basic weight ratio of 1:10 is thus maintained by the use of this cell.

S contains two weighting transistors and the crossings The connections are established at layout time by a
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macro which generates a randomized list and then places on the bulb side to obtain the inhibition for that samI
geometries on the appropriate mask layer(s) to establish or "sniff."

: the interconnections in the layout database. The objec- For individual weights, the control logic for t
tive of this approach is to minimize interconnect and coactivity-based learning rule corresponds to a sim!
routing area and conserve the number of devices re- AND function; taken in parallel it may be regarded
quired in the interconnection matrix, which factors are a Boolean outer product. This can be implemented
of concern [7, 501 in a direct, nonmultiplexed im- crossbars running through the weight matrix using sii
"plementation. Assuming scalable design rules, we pie switches which are controlled by the neuron stai
estimate the area required for this scheme is on the and which route programming voltages to writing c
order of one-fifth to one-tenth the area estimate given cuitry for the floating-gate weights.
by Hammerstrom and Means [501 for direct implemen- A block diagram representing an overview of i
tation, and which is cited by them as a motivating fac- proposed system is shown in figure 2.
tor for development of a broadcast multiplexed digital
architecture as an alternative to the direct analog 3.2. Circuit Designs
approach.

The price paid for the simplicity of the proposed Many of the functions which are required to implemt
architecture is the forfeiture of a certain degree of the model as described above may be achieved w
statistical independence of the connectivity. For exam- well-known analog building blocks. In designing c
pie, three particular LOT lines which pass through the circuitry, a current-mode approach was adopted J
same basic weight cell have zero probability of synap- reasons of improved bandwidth and noise immuni
sing onto the same piriform input line, and three piri- (Voltage-mode signals are assumed at network inpt
form lines passing through the cell have zero probability and outputs, however, for convenience of external int
of receiving synaptic input from the same LOT line. face.) A settling time on the order of several hundr
Without the constraint imposed by the weight cell, the nanoseconds was targeted for feedforward excitatory
probability of either of these events is (1/10)3 or feedback inhibitory phases of network operatic
1/1000. However, as a consequence of the central limit Current-mode circuits in addition permit a simple so
theorem, the distribution of active synapses onto the tion to the proposed bidirectional, time-multiplexed i
piriform input lines becomes similar to that of the un- of the weight matrix. Interface is made to the weil
constrained interconnection pattern of the original matrix on both the mitral and piriform sides via tyl
model as the number of LOT lines increases. We have two current conveyors (CCII) [51], which act as bidin
calculated both distributions for LOTs of several hun- tional buffer/drivers. In the CCII design shown in figi
dred lines and mitral activity of 20%, and they are very 3, a folded-cascode differential amplifier is used a:
similar; thus use of the weight cell is not regarded as gain element for wide bandwidth. Its positive inj
an important constraint in networks which are suffi- serves as the reference (Y) terminal of the conveyt
ciently large, but still of realizable size. a class AB output stage (MFN and MFP) coupled

To !'nplement feedback inhibition of the bulb by the the negative input forms the voltage-following (X) t,
piriform, we propose a time-duplex scheme. The minal, and the current output of this stage is in tt
original algorithm call for distinct feedback paths from copied to give the current (Z) output of the convey,
piriform to bulb, with inhibitory synapses trained ac- Two options for the initial processing and normali;
cording to a correlative or Hebb-type learning rule in tion of input vector are shown schematically in figui
a developmental phase prior to the application of struc- la and lb, as noted in Section 3.1; we describe th,
tured input. However, since these correlations arise in salient components below. For multiplication by I
direct consequence of the given connectivity of the LOT global gain in the AGC loop, both simple voltaj
synapses, the same effect can be obtained by using the controlled active loads and a more complex transcc
transpose of the LOT weight matrix to compute bulbar ductance multiplier for improved linearity are une
inhibition. Physically, this implies that a single weight consideration. The transconductance multiplier is
matrix can be used to compute excitatory bulbar input modified dual-quad circuit. The sigmoid nonlinear
to piriform, followed by inhibitary currents from piri- of the first preprocessing option is imposed by the c
form feedback to bulb. In the second phase, winning cuit shown in figure 4, in which the basis 0 G sets I
piriform cells would drive the weight matrix, and the threshold and Vc sets saturation. The input load is
output currents would be summed over each glomerulus practice a complementary series pair of MOSFE
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strongly biased in the triode region. The four cross- When the network is in the feedforward mode, tj
coupled n-channel transistors, M I-M4, when in satura- reference (Y) input of the current conveyors for acti
tion, impress the input voltage less the bias 0 G across mitral cells are switched to ground while others a
nonlinear (saturating) load M9, and the current through switched to a high reference. On the piriform side.,
M9 is copied to provide the output of the circuit. In reference inputs are switched to the high reference. TI
the second option, the offset needed to elicit a full-scale X terminal voltage follows the Y input per normal CC
response to largest input component is computed by a operation.
fast inner closed-loop circuit as depicted in figure lb, The weighting elements in the weight matrix ea(
in which the output of a may;mum detection circuit (not comprise an individual floating-gate p-channel transi
depicted) is compared against a full-scale reference. As tor. The floating gate on the first polysilicon layer
a gain element in these loops, the folded-cascode dif- capacitively coupled to a "control gate" on the secoi
ferential amplifier embedded in the CCII circuit of polysilicon layer, and the bias applied to the poly-2 co
figure 3 may be used with the two output terminals trol gate is used to establish the transconductance corr
connected. sponding to the naive weight, when the floating gate

The thermometer-coding function of each glomer- uncharged. The bias capacitor is also used to apply
uluý, is achieved with a circuit analogous to the first programming voltage during learning, to be discuss(
stage of a parallel analog-to-digital converter, as illus- below. Negative charge on the floating gate increasi
trated in figure 5. A voltage ladder is established by the transistor transconductance and thus the weight asst
a series of identical capacitors. Full-scale voltage is set ciated with the interconnection. Current flows via ti
globally by equilibrating full-scale input current across weighting transistors to active mitral cell conveyors froi
a load (again composed of active devices biased strong- piriform conveyors, while no appreciable current flov
ly in the triode region). In a VLSI network, the full- to inactive mitral cell conveyors from piriform coi
scale current could be copied and routed to loads in veyors since both reference inputs are at the same leve
each glomerulus to maintain accuracy. The preproc- The current (Z) outputs of the piriform current cot
essed input current for each glomerulus is equilibrated veyors are routed as inputs to winner-take-all circui
across an identical load and the resulting voltage com- which define the piriform patches. The winner-tak(
pared against each step of the voltage ladder by a series all circuit depicted in figure 6 operates with global fee(
of comparators, whose outputs represent the states of back much like the circuit of Lazarro et al. [49], bi
the mitral cells within the glomerulus. is designed for improved sensitivity. It is reset at tf

beginning of each sniff by transistor M5, whichVDD ndistributed in each of the piriform cell analogs, an
M 1• MRwhich discharges the common gate of transistors M

to V,. When M5 is shut off, this common gate
CG charged by the incoming currents, and when the M

SLOT 16 devices turn on, each begins to sink a portion of th
C input current for its cell. In all but the cell with ti,

IFS T maximum input, the current drawn by M I reaches the
exceeds the input current, and the difference currei
must be drawn via M4. At this transition, the voltag
at the input node falls from a threshold above groun
to a threshold below. The input node of the single wir

R_ 1 ner remains near one threshold above ground. with M
(OT1 conducting just sufficiently to balance the leakage cui

rent from the common gate of the M I transistors. Th
voltages at the input nodes are amplified and level
shifted bh inverters to give the piriform outputs t,
10-5 V logic. Transistors M2 in figure 6 are cascode

F:ig+ .5 Thermometer-coding circuit IF~s is a reference current or- included to prevent large sw'ings in the drain voltage

responding to full-scale input, and I,, is the input current The tw, of the M I devices.

load resistances are composed of active devices in practice, and are

identical. LOTI(-LMT16 are comparators whose output.% con...tute This analysis assumes that discharge of capacitance
the thermometer encoding of the input at the circuit inputs is last relative to the charging of th
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Fig. 6 Winner-take-all circuit for piriform patch with h cells Ip, are iapui urrenit o

feedback capacitance at thegates of M1. If this is not the hold capacitors CH to I ',k or ',,. It inc.lude, dynamic
case, then the gates of M I may overcharge and draw a current mirrors to enhance the accuracy of the current
current greater than the maximum input current during copying function.
settling, in which case all outputs are pulled low, and During learning, we propose to exploit simple drain-
remain so while the feedback node is drawn down by side hot-electron injection onto the floating gates of the
leakage off the feedback capacitance, until the M I cur- weighting transistors through a gate oxide of usual thick-
rents decrease to the maximum input and M3 for the cell ness. This obviates the need for EEPROM or other spe-
with maximum input is forced to the edge of cial processing to implement the floating-gate weights.
conduction. A scheme for performing coactivity-based updating is

The sparse pattern of piriform winners from these outlined as follows. For each mitral output line in the
winner-take-all circuits constitutes the output of the net- LOT, a corresponding bias line is fabricated which con-
work. Time multiplexing and/or digital encoding would tacts the control gate of every weighting transistor con-
be used in practice to take this data off-chip, in order to nected to the mitral line. During normal operation, these
limit pin count. To ensure a valid binary code, a digital bias lines are all set at a common bias voltage used to
logic-based tie-resolving circuit has been developed to establish the naive weight value. When the weights are
btainasingle winnerfromtheoutput ofthe analog win- to be updated, the bias lines corresponding to active
er-take-all circuit. These circuits are conventional and mitral cells are switched to a high-voltage programming
fsecondary concern, and will not be considered further. line via high-voltage switches, while on the piriform

After piriformn winners are established, the feedback side, the reference inputs of current conveyors for win-
inhibitory phase of the network operation t-kes place. ning piriform cells are strobed to the negative rail, pull-
Piriform states are latched, and the reference inputs for ing the drains of the weighting transistors for those cells
the conveyors of the winning cells are switched to high to nearly the same potential. It is assumed that the ampli-

erence, while those of the losers and of the conveyors tude of the programming voltage less the lower rail is
n the bulb side are grounded. The output currents of sufficient to allow injection of some appropriate amount
e conveyors for each glomerulus in the bulb are of charge. In this way, the weights interconnecting coac-

1$ iunmed and used to determine level of inhibition. tive mitral and piriform cells are incremented. Mean-
Within the general framework of the biological model, while, the reference inputs of the mitral and losing piri-
everal schemes for computation of inhibition are under form current conveyors are maintained at an intermediate
a ovestigation, ranging from scaling to thresholding of potential such as ground. It is assumed that the program-

"'; . . 'ic cumulated feedback current before subtraction from ming voltage less the intermediate voltage does not cause
s- ýfternal input current. To accumulate feedback over a injection of significant charge. In addition, the bias lines

eries of sniffs, a current copier/integrator has been of inactive mitral cells are held at some potential suf-
ii-signed as shown schematically in figure 7. The cur- ficiently high to maintain the corresponding transistors
ent copier/integrator operates under control of a clock in a strongly accumulated state and prevent significant
vith two (nonoverlapping) phases, the first of which channel current in any devices connected to winning
Dust fall within the feedback phase of the system clock. piriform cells. In this way, the update rule may be
t. I is reset before each series of sniffs by discharging implemented in parallel without drawing large currents.
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Fig. 7 Current copier/integrator. IN is input current (summed over m LOT lines connected with a single glomerulus), and 1o is the accumulate
output current. 402 and 2 are nonoverlapping clock phases which control opening and closing of transmission gate switches depicted.

4. Results absolute error of 5%. Bandwidth in simulations wiu
the output loaded by a diode-connected MOSFET (WI,

Most of the circuits described above were fabricated =5 Am/5 itm) is 30 MHz. The sigmoid circuit behave
in a MOSIS 2 ,m analog CMOS process, or an Orbit qualitatively as expected in dc tests, with saturation an
Semiconductor 1.5 jim CMOS process intended threshold characteristics controllable by the two bia
primarily for digital applications. Both proceses had voltages Vc and Or, respectively. The simulateA
double-polysilicon and double-metal layers. Testing per- small-signal bandwidth varies with state but exceed
formed on these circuits was generally limited to dc 10 MHz across the range.
functionality as available test resources did not permit The dc transfer characteristic of the thermometer
full-bandwidth ac or real-time response testing, due coding circuit is qualitatively as expected, although in
primarily to capacitive loading of input and output put capacitance of the comparators connected to th,
nodes. Consequently, SPICE simulation results are capacitive ladder contributes to a nonunifbrmity in stel
given to represent the ac frequency or transient response size of the quantization performed by the circuit. N(
of the circuits. Test results were obtained from either particular design measures were taken against sucl
two or three die. variations as they are believed to be of little significanct

In tests of the CCII circuit, the X output follows the as long as quantization is monotonic. In simulations
Y reference from -2.5 to 2.5 V under 1-40 load, and the unloaded comparator outputs respond to a full-scak
the Z output stage is capable of tracking the X output step input to the thermometer-coding circuit with risc
current from -2 to 1.75 mA. Simulated unity-gain times in the range of 20-150 ns (see figure 8). Respons(
bandwidth into the 1-k0 load is in excess of 20 MHz. times are directly related to position of the comparatoi

Several of the subblocks for the nonlinear normal- reference input on the voltage ladder, which determine,
ization circuitry were successfully fabricated and tested. magnitude of differential drive voltages. The same time
The transconductance multiplier exhibits an rms linear- order of response occurs in the test circuits witl
ity error (relative to full scale) of 1.7 % and a maximum capacitively loaded outputs.
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A 32-stage winner-take-all test circuit was fabricated ,o,•, [,I .... 5PONt

tested. It was found capable of resolving input cur-
ndifsing by 1-3 pA at total input levels of 70-140 6
In eight tests on three circuits, the average resolu- - _ _ __I

on was 2.1 pA. As a design target a figure of 5 jA A .. --

r the current output of a naive weight has been used,
average resolution is to better than half the design j I

nt delivered by a single naive weight. 0, ,
'Without added capacitance at the feedback node, the ,

*ner-take-all circuit with device geometries as de-
gned has been found to permit overcharging of the I

bedback node in certain simulated worst-case scenar- - - t
0s. An added capacitance of 2 pF was included in the 1, , - 0 A . .
'imulation summarized in figure 9, which depicts time
purse of response of the circuit after reset in a near-

Fig. 9 Samulasd transient response of a 32-stage wanner-take-all car-vorst-case senario in which the fbur largest input cur- c* i low level o60 gA three were
ents are nearly equal and appreciably larger than the at the high level of 138 p&A, and the winning input was at 140 ,A
dimhrs. The simulation includes no external capacitance Examples of three corresponding outputs are shown. Time course( the inputs and outputs. Time to determination of the of reseting is indicated.

r nner in this case is on the order of 120 ns. Improved
1!erformance and elimination of the added capacitance will increase both capacitance at the feedback node and'a4i n be achieved by modification of the geometries of the bypass current which discharges capacitance at thel:ie devices in figure 6; in particular, widening of MI input node via MI and M2.
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Due to a design/layout error, the current copier/ programming time. Charge relaxation measureir
integrator displayed a large copying error (about 70% have not been made, although measurable charge
at 40 pA) at the initial cycle in dc tests. Simulations does not occur within days at room temperature. Ir
indicate the circuit to be operable at a clocking speed dition, in an experiment with 13 V, I-ps programr.
of 10 MHz. pulses applied to the control gate, the drain tern

Floating gate test circuits were fabricated in the 1.5 was grounded rather than pulsed to -5 V, which
Am digital process (which had a gate oxide thickness null update state in the parallel learning scheme.
of 25 rum), and tested according to the programming measurable threshold shift was obtained after 1 ms
scheme described in Section 3.2. Programming programming time.
voltages of 17-19.5 V total amplitude (control gate to Several unresolved issues remain with regard to
drain) were used, applied in pulses of several durations of this circuit as a nonvolatile programmable wei
and rise times. Positive-going control gate pulses over- One is the strongly nonlinear dependence of charg,
lapped negative-going drain pulses to prevent channel jection on floating gate potential relative to the dr
current flow. Figure 10 depicts shift in transistor which decreases as charge builds up on the gate. '
threshold voltage (relative to the control gate) observed is reflected in figure 10, in which the abscissa is pic
in one of these tests. These shifts are representative of log-scale. The relationship does result in effec
th potential changes of the floating gate. Useful shifts saturation of the weight but the uneven increment s
required microseconds or tens of microseconds of total during the first few pulses are of concern with rej

0
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POM time, ji S2 
00 4- - 1 10 0
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I

Fig. 10. Threshold voltage shift for a floating gate test circuit subjected to I-,us, 18-V programming pulses with 120-ns rise times. ThreO
is measured relative to the control gate.
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